Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.257
Filtrar
1.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656455

RESUMO

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Assuntos
Alginatos , Anticorpos Antivirais , Quitosana , Imunidade nas Mucosas , Imunoglobulina A , Imunoglobulina G , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Administração Oral , Vírus da Diarreia Epidêmica Suína/imunologia , Alginatos/administração & dosagem , Quitosana/administração & dosagem , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Suínos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Feminino , Géis/administração & dosagem , Camundongos Endogâmicos BALB C , Interferon gama/imunologia , Ácido Glucurônico/administração & dosagem , Ácidos Hexurônicos/administração & dosagem
2.
Funct Integr Genomics ; 24(3): 79, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653845

RESUMO

Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Evasão da Resposta Imune , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Deltacoronavirus/patogenicidade , Deltacoronavirus/imunologia , Deltacoronavirus/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/epidemiologia , Vacinas Virais/imunologia , Desenvolvimento de Vacinas , Humanos
3.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411947

RESUMO

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Assuntos
Infecções por Coronavirus , Interferons , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Autofagia , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Interferons/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Replicação Viral
4.
J Virol ; 98(2): e0137723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197629

RESUMO

Gut microbiota-derived metabolites are important for the replication and pathogenesis of many viruses. However, the roles of bacterial metabolites in swine enteric coronavirus (SECoV) infection remain poorly understood. Recent studies show that SECoVs infection in vivo significantly alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota. This prompted us to investigate whether and how SCFAs impact SECoV infection. Employing alphacoronavirus transmissible gastroenteritis virus (TGEV), a major cause of diarrhea in piglets, as a model, we found that SCFAs, particularly butyrate, enhanced TGEV infection both in porcine intestinal epithelial cells and swine testicular (ST) cells at the late stage of viral infection. This effect depended on the inhibited productions of virus-induced type I interferon (IFN) and downstream antiviral IFN-stimulated genes (ISGs) by butyrate. Mechanistically, butyrate suppressed the expression of retinoic acid-inducible gene I (RIG-I), a key viral RNA sensor, and downstream mitochondrial antiviral-signaling (MAVS) aggregation, thereby impairing type I IFN responses and increasing TGEV replication. Using pharmacological and genetic approaches, we showed that butyrate inhibited RIG-I-induced type I IFN signaling by suppressing class I histone deacetylase (HDAC). In summary, we identified a novel mechanism where butyrate enhances TGEV infection by suppressing RIG-I-mediated type I IFN responses. Our findings highlight that gut microbiota-derived metabolites like butyrate can be exploited by SECoV to dampen innate antiviral immunity and establish infection in the intestine.IMPORTANCESwine enteric coronaviruses (SECoVs) infection in vivo alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota, but whether microbiota-derived SCFAs impact coronavirus gastrointestinal infection is largely unknown. Here, we demonstrated that SCFAs, particularly butyrate, substantially increased alphacoronavirus TGEV infection at the late stage of infection, without affecting viral attachment or internalization. Furthermore, enhancement of TGEV by butyrate depended on impeding virus-induced type I interferon (IFN) responses. Mechanistically, butyrate suppressed the cytoplasmic viral RNA sensor RIG-I expression and downstream type I IFN signaling activation by inhibiting class I HDAC, thereby promoting TGEV infection. Our work reveals novel functions of gut microbiota-derived SCFAs in enhancing enteric coronavirus infection by impairing RIG-I-dependent type I IFN responses. This implies that bacterial metabolites could be therapeutic targets against SECoV infection by modulating antiviral immunity in the intestine.


Assuntos
Butiratos , Infecções por Coronavirus , Coronavirus , Microbioma Gastrointestinal , Interferon Tipo I , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Butiratos/metabolismo , Coronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Interferon Tipo I/imunologia , RNA Viral , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
5.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289117

RESUMO

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Assuntos
Proteases 3C de Coronavírus , Infecções por Coronavirus , Deltacoronavirus , Interferon Tipo I , Peptídeos e Proteínas de Sinalização Intracelular , Doenças dos Suínos , Suínos , Animais , Humanos , Proteases 3C de Coronavírus/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Deltacoronavirus/enzimologia , Deltacoronavirus/metabolismo , Deltacoronavirus/patogenicidade , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Transdução de Sinais/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Fatores de Transcrição/metabolismo , Zoonoses Virais/imunologia , Zoonoses Virais/virologia , Replicação Viral
6.
J Virol ; 97(12): e0119323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971221

RESUMO

IMPORTANCE: Coronaviruses are important pathogens of humans and animals, and vaccine developments against them are imperative. Due to the ability to induce broad and prolonged protective immunity and the convenient administration routes, live attenuated vaccines (LAVs) are promising arms for controlling the deadly coronavirus infections. However, potential recombination events between vaccine and field strains raise a safety concern for LAVs. The porcine epidemic diarrhea virus (PEDV) remodeled TRS (RMT) mutant generated in this study replicated efficiently in both cell culture and in pigs and retained protective immunogenicity against PEDV challenge in pigs. Furthermore, the RMT PEDV was resistant to recombination and genetically stable. Therefore, RMT PEDV can be further optimized as a backbone for the development of safe LAVs.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Recombinação Genética , Doenças dos Suínos , Suínos , Vacinas Atenuadas , Vacinas Virais , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/crescimento & desenvolvimento , Vírus da Diarreia Epidêmica Suína/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral , Células Cultivadas , Mutação
7.
J Virol ; 97(9): e0084723, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681956

RESUMO

Porcine epidemic diarrhea virus (PEDV) leads to enormous economic losses for the pork industry. However, the commercial vaccines failed to fully protect against the epidemic strains. Previously, the rCH/SX/2016-SHNXP strain with the entire E protein and the rCH/SX/2015 strain with the deletion of 7-amino-acid (7-aa) at positions 23-29 in E protein were constructed and rescued. The pathogenicity assay indicated that rCH/SX/2015 is an attenuated strain, but rCH/SX/2016-SHNXP belongs to the virulent strains. Then, the recombination PEDV (rPEDV-EΔaa23-aa29)strain with a 7-aa deletion in the E protein was generated, using the highly virulent rCH/SX/2016-SHNXP strain (rPEDV-Ewt) as the backbone. Compared with the rPEDV-Ewt strain, the release and infectivity of the rPEDV-EΔaa23-aa29 strain were significantly reduced in vitro, but stronger interferon (IFN) responses were triggered both in vitro and in vivo. The pathogenicity assay showed that the parental strain resulted in severe diarrhea (100%) and death (100%) in all piglets. Compared with the parental strain group, rPEDV-EΔaa23-aa29 caused lower mortality (33%) and diminished fecal PEDV RNA shedding. At 21 days, all surviving pigs were challenged orally with rPEDV-Ewt. No pigs died in the two groups. Compared with the mock group, significantly delayed and milder diarrhea and reduced fecal PEDV RNA shedding were detected in the rPEDV-EΔaa23-aa29 group. In conclusion, the deletion of a 7-aa fragment in the E protein (EΔaa23-aa29) attenuated PEDV but retained its immunogenicity, which can offer new ideas for the design of live attenuated vaccines and provide new insights into the attenuated mechanism of PEDV. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets and remains a large challenge to the pork industry. Unfortunately, no safe and effective vaccines are available yet. The pathogenesis and molecular basis of the attenuation of PEDV remain unclear, which seriously hinders the development of PEDV vaccines. This study found that the rPEDV carrying EΔaa23-aa29 mutation in the E protein induced significantly higher IFN responses than the parental virus, partially attenuated, and remained immunogenic in piglets. For the first time, PEDV E was verified as an IFN antagonist in the infection context and identified as a virulence factor of PEDV. Our data also suggested that EΔaa23-aa29 mutation can be a good target for the development of live attenuated vaccines for PEDV and also provide new perspectives for the attenuated mechanism of PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Proteínas do Envelope Viral , Animais , Infecções por Coronavirus/veterinária , Interferons , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas Atenuadas/genética , Deleção de Sequência , Proteínas do Envelope Viral/genética
8.
J Virol ; 97(2): e0175122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752613

RESUMO

Porcine epidemic diarrhea virus (PEDV) belongs to the genus Alphacoronavirus of the Coronaviridae family and can cause fatal watery diarrhea in piglets, causing significant economic losses. Heterogeneous nuclear protein U (HNRNPU) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. However, it remains elusive whether and how cytoplasmic PEDV can be sensed by the RNA sensor HNRNPU. In this study we determined that HNRNPU was the binding partner of Nsp13 by immunoprecipitation-liquid chromatography-tandem mass spectrometry (IP/LC-MS/MS) analysis. The interaction between Nsp13 and HNRNPU was demonstrated by using coimmunoprecipitation and confocal immunofluorescence. Next, we identified that HNRNPU expression is significantly increased during PEDV infection, whereas the transcription factor hepatocyte nuclear factor 1α (HNF1A) could negatively regulate HNRNPU expression. HNRNPU was retained in the cytoplasm by interaction with PEDV Nsp13. We found that HNRNPU overexpression effectively facilitated PEDV replication, while knockdown of HNRNPU impaired viral replication, suggesting a promoting function of HNRNPU to PEDV infection. Additionally, HNRNPU was found to promote PEDV replication by affecting TRAF3 degradation at the transcriptional level to inhibit PEDV-induced beta interferon (IFN-ß) production. Mechanistically, HNRNPU downregulates TRAF3 mRNA levels via the METTL3-METTL14/YTHDF2 axis and regulates immune responses through YTHDF2-dependent mRNA decay. Together, our findings reveal that HNRNPU serves as a negative regulator of innate immunity by degrading TRAF3 mRNA in a YTHDF2-dependent manner and consequently facilitating PEDV propagation. Our findings provide new insights into the immune escape of PEDV. IMPORTANCE PEDV, a highly infectious enteric coronavirus, has spread rapidly worldwide and caused severe economic losses. During virus infection, the host regulates innate immunity to inhibit virus infection. However, PEDV has evolved a variety of different strategies to suppress host IFN-mediated antiviral responses. Here, we identified that HNRNPU interacted with viral protein Nsp13. HNRNPU protein expression was upregulated, and the transcription factor HNF1A could negatively regulate HNRNPU expression during PEDV infection. HNRNPU also downregulated TRAF3 mRNA through the METTL3-METTL14/YTHDF2 axis to inhibit the production of IFN-ß and downstream antiviral genes in PEDV-infected cells, thereby promoting viral replication. Our findings reveal a new mechanism with which PEDV suppresses the host antiviral response.


Assuntos
Infecções por Coronavirus , Proteínas Nucleares , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Replicação Viral , Animais , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Proteínas Nucleares/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA Mensageiro/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Fator 3 Associado a Receptor de TNF/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/fisiologia
9.
J Virol ; 97(1): e0161422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541804

RESUMO

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Assuntos
Proteínas do Capsídeo , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas , Replicação Viral/genética , Proteínas Nucleares/metabolismo , Autofagia
10.
Vet Microbiol ; 275: 109582, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306554

RESUMO

Pseudorabies virus (PRV) is a member of the genus Varicellovirus, family Herpesviridae and causes Aujeszky's disease to lead to huge economic losses in the global pig industry. The Non-POU domain-containing octamer-binding protein (NONO), as a Drosophila behavior/human splicing (DBHS) protein, plays a key role in multiple biological functions in cells, including transcriptional regulation, RNA splicing, DNA repair and so on. However, whether swine NONO (sNONO) inhibits PRV infection is less understood. In this study, we showed that sNONO was a crucial host factor for antagonizing PRV infection and positive regulated transcription levels of ISGs. After PRV infection, sNONO enhanced the activation of IFN-ß promoter and IFN-ß expression. Furthermore, knockout of sNONO in PAM-KNU cells impaired activation of type I IFN pathway and increased PRV propagation. Taken together, we have first elucidated the anti-PRV function and mechanism of sNONO, which may provide a new strategy for preventing DNA virus infection.


Assuntos
Proteínas de Ligação a DNA , Pseudorraiva , Proteínas de Ligação a RNA , Doenças dos Suínos , Animais , Proteínas de Ligação a DNA/genética , Herpesvirus Suídeo 1 , Interferon beta/imunologia , Pseudorraiva/imunologia , Proteínas de Ligação a RNA/genética , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Fatores de Transcrição
11.
J Virol ; 96(18): e0102422, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36037478

RESUMO

Zoonotic coronaviruses represent an ongoing threat to public health. The classical porcine epidemic diarrhea virus (PEDV) first appeared in the early 1970s. Since 2010, outbreaks of highly virulent PEDV variants have caused great economic losses to the swine industry worldwide. However, the strategies by which PEDV variants escape host immune responses are not fully understood. Complement component 3 (C3) is considered a central component of the three complement activation pathways and plays a crucial role in preventing viral infection. In this study, we found that C3 significantly inhibited PEDV replication in vitro, and both variant and classical PEDV strains induced high levels of interleukin-1ß (IL-1ß) in Huh7 cells. However, the PEDV variant strain reduces C3 transcript and protein levels induced by IL-1ß compared with the PEDV classical strain. Examination of key molecules of the C3 transcriptional signaling pathway revealed that variant PEDV reduced C3 by inhibiting CCAAT/enhancer-binding protein ß (C/EBP-ß) phosphorylation. Mechanistically, PEDV nonstructural protein 1 (NSP1) inhibited C/EBP-ß phosphorylation via amino acid residue 50. Finally, we constructed recombinant PEDVs to verify the critical role of amino acid 50 of NSP1 in the regulation of C3 expression. In summary, we identified a novel antiviral role of C3 in inhibiting PEDV replication and the viral immune evasion strategies of PEDV variants. Our study reveals new information on PEDV-host interactions and furthers our understanding of the pathogenic mechanism of this virus. IMPORTANCE The complement system acts as a vital link between the innate and the adaptive immunity and has the ability to recognize and neutralize various pathogens. Activation of the complement system acts as a double-edged sword, as appropriate levels of activation protect against pathogenic infections, but excessive responses can provoke a dramatic inflammatory response and cause tissue damage, leading to pathological processes, which often appear in COVID-19 patients. However, how PEDV, as the most severe coronavirus causing diarrhea in piglets, regulates the complement system has not been previously reported. In this study, for the first time, we identified a novel mechanism of a PEDV variant in the suppression of C3 expression, showing that different coronaviruses and even different subtype strains differ in regulation of C3 expression. In addition, this study provides a deeper understanding of the mechanism of the PEDV variant in immune escape and enhanced virulence.


Assuntos
Complemento C3 , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Proteínas não Estruturais Virais , Replicação Viral , Animais , Antivirais , COVID-19/imunologia , Linhagem Celular Tumoral , Complemento C3/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
12.
Vet Microbiol ; 272: 109515, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35908442

RESUMO

Innate immune system composed of pathogen pattern recognition receptors (PRRs) is the first barrier to recognize and defend viral invasion. Previously,the double-stranded RNA binding protein staufen1 (STAU1) was identified as an important candidate in regulating RIG-I/MDA5 signaling axis, which is the major cytosolic PRRs for initiating immune response to antagonize RNA viruses. However, the mechanism of STAU1 on RNA virus infection is still unclear. In the present study, we demonstrated that STAU1 is a highly conservative dsRNA-binding protein in human and mammals. The porcine STAU1 (pSTAU1) could bind to the PEDV original dsRNA in cytoplasm. Furthermore, pSTAU1 is a binding partner that can positively increase the combination of MDA5 and dsRNA in cells, but slightly on RIG-I-dsRNA binding. Moreover, knockdown pSTAU1 led to inhibition of poly(I:C)-stimulated, VSV and RIG-I/MDA5-induced activation of porcine INF-ß promotor activation. Overexpression pSTAU1 could positively suppress the VSV proliferation in 3D4/21 cells. In sum, our data identify pSTAU1 as a key component of RIG-I/MDA5 binding viral dsRNA required for innate antiviral immunity in swine. The novel findings provide a new insight into host sensing the RNA-viruses infection.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Infecções por Vírus de RNA , Proteínas de Ligação a RNA/metabolismo , Doenças dos Suínos , Animais , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Mamíferos , Ligação Proteica , Infecções por Vírus de RNA/veterinária , RNA de Cadeia Dupla , Suínos , Doenças dos Suínos/imunologia
13.
J Virol ; 96(13): e0014322, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35658531

RESUMO

Differentiation of infected from vaccinated hosts (DIVH) is a critical step in virus eradication programs. DIVH-compatible vaccines, however, take years to develop, and are therefore unavailable for fighting the sudden outbreaks that typically drive pandemics. Here, we establish a protocol for the swift and efficient development of DIVH assays, and show that this approach is compatible with any type of vaccines. Using porcine circovirus 2 (PCV2) as the experimental model, the first step is to use Immunoglobin G (IgG) sero-dynamics (IsD) curves to aid epitope discovery (IsDAED): PCV2 Cap peptides were categorized into three types: null interaction, nonspecific interaction (NSI), and specific interaction (SI). We subsequently compared IsDAED approach and traditional approach, and demonstrated identifying SI peptides and excluding NSI peptides supports efficient diagnostic kit development, specifically using a protein-peptide hybrid microarray (PPHM). IsDAED directed the design of a DIVH protocol for three types of PCV2 vaccines (while using a single PPHM). Finally, the DIVH protocol successfully differentiated infected pigs from vaccinated pigs at five farms. This IsDAED approach is almost certainly extendable to other viruses and host species. IMPORTANCE Sudden outbreaks of pandemics caused by virus, such as SARS-CoV-2, has been determined as a public health emergency of international concern. However, the development of a DIVH-compatible vaccine is time-consuming and full of uncertainty, which is unsuitable for an emergent situation like the ongoing COVID-19 pandemic. Along with the development and public health implementation of new vaccines to prevent human diseases, e.g., human papillomavirus vaccines for cervical cancer; enterovirus 71 vaccines for hand, foot, and mouth disease; and most recently SARS-CoV-2, there is an increasing demand for DIVH. Here, we use the IsDAED approach to confirm SI peptides and to exclude NSI peptides, finally to direct the design of a DIVH protocol. It is plausible that our IsDAED approach is applicable for other infectious disease.


Assuntos
Anticorpos Antivirais , Infecções por Circoviridae , Epitopos , Imunoglobulina G , Vacinas Virais , Animais , Anticorpos Antivirais/sangue , COVID-19 , Infecções por Circoviridae/imunologia , Circovirus , Modelos Animais de Doenças , Epitopos/análise , Epitopos/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Peptídeos , SARS-CoV-2 , Suínos , Doenças dos Suínos/imunologia , Vacinas Virais/imunologia
14.
J Virol ; 96(13): e0217121, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35708311

RESUMO

The alphaherpesvirus pseudorabies virus (PRV) is the etiologic agent of swine Aujeszky's disease, which can cause huge economic losses to the pig industry. PRV can overcome a type I interferon (IFN)-induced antiviral state in host cells through its encoded EP0 protein. However, the exact role of EP0 in this process is poorly defined. Here, we report that EP0 transcriptionally represses IFN regulatory factor 9 (IRF9), a critical component in the IFN signaling pathway, thereby reducing the cellular levels of IRF9 and inhibiting IFN-induced gene transcription. This activity of EP0 is mediated by its C-terminal region independently of the RING domain. Moreover, compared with EP0 wild-type PRV, EP0-deficient PRV loses the ability to efficiently decrease cellular IRF9, while reintroducing the C-terminal region of EP0 back into the EP0-deficient virus restores the activity. Together, these results suggest that EP0 can transcriptionally modulate IRF9-mediated antiviral pathways through its C-terminal region, contributing to PRV innate immune evasion. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals. Pseudorabies virus (PRV) is a swine alphaherpesvirus that threatens pig production. Using PRV as a model, we found that alphaherpesvirus can utilize its encoded early protein EP0 to inhibit the IFN-induced upregulation of antiviral proteins by reducing the basal expression levels of IRF9 through repressing its transcription. Our findings reveal a mechanism employed by alphaherpesvirus to evade the immune response and indicate that EP0 is an important viral protein in pathogenesis and a potential target for antiviral drug development.


Assuntos
Herpesvirus Suídeo 1 , Interferon Tipo I , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Pseudorraiva , Doenças dos Suínos , Animais , Antivirais/farmacologia , Regulação da Expressão Gênica/imunologia , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Pseudorraiva/imunologia , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
15.
J Virol ; 96(13): e0071422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35730976

RESUMO

Pseudorabies virus (PRV) is a porcine alphaherpesvirus that belongs to the Herpesviridae family. We showed earlier that infection of porcine epithelial cells with PRV triggers activation of the nuclear factor κB (NF-κB) pathway, a pivotal signaling axis in the early immune response. However, PRV-induced NF-κB activation does not lead to NF-κB-dependent gene expression. Here, using electrophoretic mobility shift assays (EMSAs), we show that PRV does not disrupt the ability of NF-κB to interact with its κB target sites. Assessing basal cellular transcriptional activity in PRV-infected cells by quantitation of prespliced transcripts of constitutively expressed genes uncovered a broad suppression of cellular transcription by PRV, which also affects the inducible expression of NF-κB target genes. Host cell transcription inhibition was rescued when viral genome replication was blocked using phosphonoacetic acid (PAA). Remarkably, we found that host gene expression shutoff in PRV-infected cells correlated with a substantial retention of the NF-κB subunit p65, the TATA box binding protein, and RNA polymerase II-essential factors required for (NF-κB-dependent) gene transcription-in expanding PRV replication centers in the nucleus and thereby away from the host chromatin. This study reveals a potent mechanism used by the alphaherpesvirus PRV to steer the protein production capacity of infected cells to viral proteins by preventing expression of host genes, including inducible genes involved in mounting antiviral responses. IMPORTANCE Herpesviruses are highly successful pathogens that cause lifelong persistent infections of their host. Modulation of the intracellular environment of infected cells is imperative for the success of virus infections. We reported earlier that a DNA damage response in epithelial cells infected with the alphaherpesvirus pseudorabies virus (PRV) results in activation of the hallmark proinflammatory NF-κB signaling axis but, remarkably, that this activation does not lead to NF-κB-induced (proinflammatory) gene expression. Here, we report that PRV-mediated inhibition of host gene expression stretches beyond NF-κB-dependent gene expression and in fact reflects a broad inhibition of host gene transcription, which correlates with a substantial recruitment of essential host transcription factors in viral replication compartments in the nucleus, away from the host chromatin. These data uncover a potent alphaherpesvirus mechanism to interfere with production of host proteins, including proteins involved in antiviral responses.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Transcrição Gênica , Animais , Herpesvirus Suídeo 1/fisiologia , Interações entre Hospedeiro e Microrganismos , NF-kappa B/genética , NF-kappa B/metabolismo , Pseudorraiva/imunologia , Pseudorraiva/fisiopatologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/fisiopatologia
16.
J Virol ; 96(11): e0046922, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583324

RESUMO

Coronavirus (CoV) nonstructural protein 1 (nsp1) inhibits cellular gene expression and antagonizes interferon (IFN) response. Porcine epidemic diarrhea virus (PEDV) infects pigs and causes high mortality in neonatal piglets. We hypothesized that a recombinant PEDV carrying mutations at the conserved residues N93 and N95 of nsp1 induces higher IFN responses and is more sensitive to IFN responses, leading to virus attenuation. We mutated PEDV nsp1 N93 and N95 to A93 and A95 to generate the recombinant N93/95A virus using the infectious clone of a highly virulent PEDV strain, PC22A (icPC22A), and evaluated N93/95A virus in vitro and in vivo. Compared with icPC22A, the N93/95A mutant replicated to significantly lower infectious titers, triggered stronger type I and III IFN responses, and was more sensitive to IFN treatment in vitro. To evaluate the pathogenicity and immunogenicity, 5-day-old gnotobiotic piglets were orally inoculated with the N93/95A or icPC22A strain or mock inoculated and then challenged at 22 days postinoculation (dpi) with icPC22A. icPC22A in all pigs (100% [5/5]) caused severe diarrhea and death within 6 dpi. Only one pig (25% [1/4]) died in the N93/95A group. Compared with the icPC22A group, significantly delayed and diminished fecal PEDV shedding was detected in the N93/95A group. Postchallenge, all piglets in N93/95A group were protected from severe diarrhea and death, whereas all pigs in the mock-challenged group developed severe diarrhea, and 25% (1/4) of them died. In summary, nsp1 N93A and N95A mutations attenuated PEDV but retained viral immunogenicity and can be targets for the development of live attenuated vaccines for PEDV. IMPORTANCE PEDV causes porcine epidemic diarrhea (PED) and remains a great threat to the swine industry worldwide because no effective vaccines are available yet. Safe and effective live attenuated vaccines can be designed using reverse genetics to induce lactogenic immunity in pregnant sows to protect piglets from the deadly PED. We found that an engineered PEDV mutant carrying N93A and N95A mutations of nsp1 was partially attenuated and remained immunogenic in neonatal pigs. Our study suggested that nsp1 N93 and N95 can be good targets for the rational design of live attenuated vaccines for PEDV using reverse genetics. Because CoV nsp1 is conserved among alphacoronaviruses (α-CoVs) and betacoronaviruses (ß-CoVs), it may be a good target for vaccine development for other α-CoVs or ß-CoVs.


Assuntos
Infecções por Coronavirus , Interferons , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Proteínas não Estruturais Virais , Animais , Animais Recém-Nascidos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Diarreia/virologia , Feminino , Interferons/imunologia , Mutação , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/genética
17.
J Virol ; 96(9): e0038022, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35435723

RESUMO

Crossing the endothelium from the entry site and spreading in the bloodstream are crucial but obscure steps in the pathogenesis of many emerging viruses. Previous studies confirmed that porcine epidemic diarrhea virus (PEDV) caused intestinal infection by intranasal inoculation. However, the role of the nasal endothelial barrier in PEDV translocation remains unclear. Here, we demonstrated that PEDV infection causes nasal endothelial dysfunction to favor viral dissemination. Intranasal inoculation with PEDV compromised the integrity of endothelial cells (ECs) in nasal microvessels. The matrix metalloproteinase 7 (MMP-7) released from the PEDV-infected nasal epithelial cells (NECs) contributed to the destruction of endothelial integrity by degrading the tight junctions, rather than direct PEDV infection. Moreover, the proinflammatory cytokines released from PEDV-infected NECs activated ECs to upregulate ICAM-1 expression, which favored peripheral blood mononuclear cells (PBMCs) migration. PEDV could further exploit migrated cells to favor viral dissemination. Together, our results reveal the mechanism by which PEDV manipulates the endothelial dysfunction to favor viral dissemination and provide novel insights into how coronavirus interacts with the endothelium. IMPORTANCE The endothelial barrier is the last but vital defense against systemic viral transmission. Porcine epidemic diarrhea virus (PEDV) can cause severe atrophic enteritis and acute viremia. However, the mechanisms by which the virus crosses the endothelial barrier and causes viremia are poorly understood. In this study, we revealed the mechanisms of endothelial dysfunction in PEDV infection. The viral infection activates NECs and causes the upregulation of MMP-7 and proinflammatory cytokines. Using NECs, ECs, and PBMCs as in vitro models, we determined that the released MMP-7 contributed to the destruction of endothelial barrier, and the released proinflammatory cytokines activated ECs to facilitate PBMCs migration. Moreover, the virus further exploited the migrated cells to promote viral dissemination. Thus, our results provide new insights into the mechanisms underlying endothelial dysfunction induced by coronavirus infection.


Assuntos
Infecções por Coronavirus , Endotélio , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Eliminação de Partículas Virais , Animais , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Citocinas , Endotélio/virologia , Molécula 1 de Adesão Intercelular/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Metaloproteinase 7 da Matriz/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Viremia
18.
PLoS One ; 17(2): e0263582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139120

RESUMO

The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.


Assuntos
Infecções por Coronavirus/virologia , Proteínas M de Coronavírus/química , Vírus da Diarreia Epidêmica Suína/química , Doenças dos Suínos/virologia , Suínos/virologia , Sequência de Aminoácidos , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Proteínas M de Coronavírus/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Modelos Moleculares , Vírus da Diarreia Epidêmica Suína/imunologia , Conformação Proteica , Doenças dos Suínos/imunologia
19.
Comput Math Methods Med ; 2022: 8660752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132333

RESUMO

Swine pneumonia commonly known as swine pasteurellosis is an infectious disease of swine caused by Pasteurella multocida infection. It has been reported that Toll-like receptors (TLRs) play a vital role in swine pneumonia progression. However, the underlying mechanism has not been elucidated. This research was aimed at investigating the molecular mechanism by which TLR9 regulates swine pneumonia progression. Our findings illustrated that the HD-13 strain of Pasteurella multocida D (HD-13) accelerated TLR9 expression in porcine alveolar macrophage 3D4/21 cells; HD-13 activated the inflammatory response via accelerating TLR9 expression. Mechanistically, HD-13 activated mitogen-activated protein kinase (MAPK) and nuclear factor kB (NF-κB) signals. In conclusion, HD-13 may activate MAPK and NF-κB pathways via accelerating TLR9 expression, thereby accelerating the inflammatory response in the progression of swine pneumonia. TLR9 may serve as a novel therapeutic target for swine pneumonia. Our research may provide a theoretical basis for the prevention and treatment of swine pneumonia.


Assuntos
Infecções por Pasteurella/veterinária , Pasteurella multocida/patogenicidade , Pneumonia/veterinária , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Receptor Toll-Like 9/imunologia , Animais , Células Cultivadas , Biologia Computacional , Citocinas/genética , Citocinas/imunologia , Progressão da Doença , Sistema de Sinalização das MAP Quinases/imunologia , NF-kappa B/imunologia , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Pasteurella multocida/classificação , Pasteurella multocida/imunologia , Pneumonia/imunologia , Pneumonia/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/imunologia , Sus scrofa , Suínos , Doenças dos Suínos/genética , Receptor Toll-Like 9/genética , Regulação para Cima
20.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215819

RESUMO

Both influenza A virus (IAV) and influenza D virus (IDV) are enzootic in pigs. IAV causes approximately 100% morbidity with low mortality, whereas IDV leads to only mild respiratory diseases in pigs. In this study, we performed a series of coinfection experiments in vitro and in vivo to understand how IAV and IDV interact and cause pathogenesis during coinfection. The results showed that IAV inhibited IDV replication when infecting swine tracheal epithelial cells (STECs) with IAV 24 or 48 h prior to IDV inoculation and that IDV suppressed IAV replication when IDV preceded IAV inoculation by 48 h. Virus interference was not identified during simultaneous IAV/IDV infections or with 6 h between the two viral infections, regardless of their order. The interference pattern at 24 and 48 h correlated with proinflammatory responses induced by the first infection, which, for IDV, was slower than for IAV by about 24 h. The viruses did not interfere with each other if both infected the cells before proinflammatory responses were induced. Coinfection in pigs further demonstrated that IAV interfered with both viral shedding and virus replication of IDV, especially in the upper respiratory tract. Clinically, coinfection of IDV and IAV did not show significant enhancement of disease pathogenesis, compared with the pigs infected with IAV alone. In summary, this study suggests that interference during coinfection of IAV and IDV is primarily due to the proinflammatory response; therefore, it is dependent on the time between infections and the order of infection. This study facilitates our understanding of virus epidemiology and pathogenesis associated with IAV and IDV coinfection.


Assuntos
Coinfecção/virologia , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Thogotovirus/fisiologia , Interferência Viral , Animais , Coinfecção/imunologia , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Thogotovirus/genética , Fatores de Tempo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...